您好、欢迎来到现金彩票网!
当前位置:秒速时时彩 > 松弛算法 >

Bellman-Ford算法的算法流程

发布时间:2019-07-28 02:58 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。 分析 Bellman-Ford算法,不难看出,外层循环(迭代次数)v-1实际上取得是上限。由上面对算法正确性的证明可知,需要的迭代遍数等于最短路径树的高度。如果不存在负权回路,平均情况下的最短路径树的高度应该远远小于 v-1,在此情况下,多余最短路径树高的迭代遍数就是时间上的浪费,由此,可以依次来实施优化。

  从细节上分析,如果在某一遍迭代中,算法描述中第7行的松弛操作未执行,说明该遍迭代所有的边都没有被松弛。可以证明(怎么证明?):至此后,边集中所有的边都不需要再被松弛,从而可以提前结束迭代过程。这样,优化的措施就非常简单了。

  优化后的算法在处理有负权回路的测试数据时,由于每次都会有边被松弛,所以relaxed每次都会被置为true,因而不可能提前终止外层循环。这对应了最坏情况,其时间复杂度仍旧为O(VE)。

  优化后的算法的时间复杂度已经和用二叉堆优化的Dijkstra算法相近了,而编码的复杂程度远比后者低。加之Bellman-Ford算法能处理各种边值权情况下的最短路径问题,因而还是非常优秀的。

http://christianiaart.com/songchisuanfa/211.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有